Official Machine Learning Blog of Amazon Web Services
-
Organizations are increasingly integrating generative AI capabilities into their applications to enhance customer experiences, streamline operations, and drive innovation. As generative AI workloads continue to grow in scale and importance, organizations face new challenges in maintaining consistent performance, reliability, and availability of their AI-powered applications. Customers are...
-
In this post, we demonstrate how to access AgentCore Gateway through a VPC interface endpoint from an Amazon Elastic Compute Cloud (Amazon EC2) instance in a VPC. We also show how to configure your VPC endpoint policy to provide secure access to the AgentCore Gateway while maintaining the principle of least privilege access.
-
In this post, we demonstrate how organizations can enhance their employee productivity by integrating Kore.ai’s AI for Work platform with Amazon Q Business. We show how to configure AI for Work as a data accessor for Amazon Q index for independent software vendors (ISVs), so employees can search enterprise knowledge and execute end-to-end agentic workflows involving search, reasoning, actions,...
-
Today, we’re excited to announce the Amazon Bedrock AgentCore Model Context Protocol (MCP) Server. With built-in support for runtime, gateway integration, identity management, and agent memory, the AgentCore MCP Server is purpose-built to speed up creation of components compatible with Bedrock AgentCore. You can use the AgentCore MCP server for rapid prototyping, production AI solutions, […]
-
In this post, we share how Hapag-Lloyd developed and implemented a machine learning (ML)-powered assistant predicting vessel arrival and departure times that revolutionizes their schedule planning. By using Amazon SageMaker AI and implementing robust MLOps practices, Hapag-Lloyd has enhanced its schedule reliability—a key performance indicator in the industry and quality promise to their...
-
We’re excited to announce that Rox is generally available, with Rox infrastructure built on AWS and delivered across web, Slack, macOS, and iOS. In this post, we share how Rox accelerates sales productivity with AI agents powered by Amazon Bedrock.
-
In this post, we demonstrate how to implement real-time fraud prevention using GraphStorm v0.5's new capabilities for deploying graph neural network (GNN) models through Amazon SageMaker. We show how to transition from model training to production-ready inference endpoints with minimal operational overhead, enabling sub-second fraud detection on transaction graphs with billions of nodes and edges.
-
In this solution, we demonstrate how the user (a parent) can interact with a Strands or LangGraph agent in conversational style and get information about the immunization history and schedule of their child, inquire about the available slots, and book appointments. With some changes, AI agents can be made event-driven so that they can automatically send reminders, book appointments, and so on.
-
In this post, we demonstrate how to build a multi-agent SRE assistant using Amazon Bedrock AgentCore, LangGraph, and the Model Context Protocol (MCP). This system deploys specialized AI agents that collaborate to provide the deep, contextual intelligence that modern SRE teams need for effective incident response and infrastructure management.
-
Today, we are excited to announce support for DoWhile loops in Amazon Bedrock Flows. With this powerful new capability, you can create iterative, condition-based workflows directly within your Amazon Bedrock flows, using Prompt nodes, AWS Lambda functions, Amazon Bedrock Agents, Amazon Bedrock Flows inline code, Amazon Bedrock Knowledge Bases, Amazon Simple Storage Service (Amazon S3), […]